Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ISME Commun ; 4(1): ycae056, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38711932

RESUMEN

Succession is a fundamental aspect of ecological theory, but studies on temporal succession trajectories and ecological driving mechanisms of plastisphere microbial communities across diverse colonization environments remain scarce and poorly understood. To fill this knowledge gap, we assessed the primary colonizers, succession trajectories, assembly, and turnover mechanisms of plastisphere prokaryotes and eukaryotes from four freshwater lakes. Our results show that differences in microbial composition similarity, temporal turnover rate, and assembly processes in the plastisphere do not exclusively occur at the kingdom level (prokaryotes and eukaryotes), but also depend on environmental conditions and colonization time. Thereby, the time of plastisphere colonization has a stronger impact on community composition and assembly of prokaryotes than eukaryotes, whereas for environmental conditions, the opposite pattern holds true. Across all lakes, deterministic processes shaped the assembly of the prokaryotes, but stochastic processes influenced that of the eukaryotes. Yet, they share similar assembly processes throughout the temporal succession: species turnover over time causes the loss of any priority effect, which leads to a convergent succession of plastisphere microbial communities. The increase and loss of microbial diversity in different kingdoms during succession in the plastisphere potentially impact the stability of entire microbial communities and related biogeochemical cycles. Therefore, research needs to integrate temporal dynamics along with spatial turnovers of the plastisphere microbiome. Taking the heterogeneity of global lakes and the diversity of global climate patterns into account, we highlight the urgency to investigate the spatiotemporal succession mechanism of plastisphere prokaryotes and eukaryotes in more lakes around the world.

2.
Curr Biol ; 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38663397

RESUMEN

Fungal biomineralization plays an important role in the biogeochemical cycling of metals in the environment and has been extensively explored for bioremediation and element biorecovery. However, the cellular and metabolic responses of fungi in the presence of toxic metals during biomineralization and their impact on organic matter transformations are unclear. This is an important question because co-contamination by toxic metals and organic pollutants is a common phenomenon in the natural environment. In this research, the biomineralization process and oxidative stress response of the geoactive soil fungus Aspergillus niger were investigated in the presence of toxic metals (Co, Cu, Mn, and Fe) and the azo dye orange II (AO II). We have found that the co-existence of toxic metals and AO II not only enhanced the fungal biomineralization of toxic metals but also accelerated the removal of AO II. We hypothesize that the fungus and in situ mycogenic biominerals (toxic metal oxalates) constituted a quasi-bioreactor, where the biominerals removed organic pollutants by catalyzing reactive oxygen species (ROS) generation resulting from oxidative stress. We have therefore demonstrated that a fungal/biomineral system can successfully achieve the goal of toxic metal immobilization and organic pollutant decomposition. Such findings inform the potential development of fungal-biomineral hybrid systems for mixed pollutant bioremediation as well as provide further understanding of fungal organic-inorganic pollutant transformations in the environment and their importance in biogeochemical cycles.

3.
Environ Sci Ecotechnol ; 21: 100388, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38351955

RESUMEN

Antibiotic resistance is an escalating global health concern, exacerbated by the pervasive presence of antibiotic resistance genes (ARGs) in natural environments. The Yangtze River, the world's third-longest river, traversing areas with intense human activities, presents a unique ecosystem for studying the impact of these genes on human health. Here, we explored ARGs in the Yangtze River, examining 204 samples from six distinct habitats of approximately 6000 km of the river, including free-living and particle-associated settings, surface and bottom sediments, and surface and bottom bank soils. Employing shotgun sequencing, we generated an average of 13.69 Gb reads per sample. Our findings revealed a significantly higher abundance and diversity of ARGs in water-borne bacteria compared to other habitats. A notable pattern of resistome coalescence was observed within similar habitat types. In addition, we developed a framework for ranking the risk of ARG and a corresponding method for calculating the risk index. Applying them, we identified water-borne bacteria as the highest contributors to health risks, and noted an increase in ARG risks in particle-associated bacteria correlating with heightened anthropogenic activities. Further analysis using a weighted ARG risk index pinpointed the Chengdu-Chongqing and Yangtze River Delta urban agglomerations as regions of elevated health risk. These insights provide a critical new perspective on ARG health risk assessment, highlighting the urgent need for strategies to mitigate the impact of ARGs on human health and to preserve the ecological and economic sustainability of the Yangtze River for future human use.

4.
Microbiol Mol Biol Rev ; 88(1): e0020022, 2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38179930

RESUMEN

SUMMARYFungi are ubiquitous and important biosphere inhabitants, and their abilities to decompose, degrade, and otherwise transform a massive range of organic and inorganic substances, including plant organic matter, rocks, and minerals, underpin their major significance as biodeteriogens in the built environment and of cultural heritage. Fungi are often the most obvious agents of cultural heritage biodeterioration with effects ranging from discoloration, staining, and biofouling to destruction of building components, historical artifacts, and artwork. Sporulation, morphological adaptations, and the explorative penetrative lifestyle of filamentous fungi enable efficient dispersal and colonization of solid substrates, while many species are able to withstand environmental stress factors such as desiccation, ultra-violet radiation, salinity, and potentially toxic organic and inorganic substances. Many can grow under nutrient-limited conditions, and many produce resistant cell forms that can survive through long periods of adverse conditions. The fungal lifestyle and chemoorganotrophic metabolism therefore enable adaptation and success in the frequently encountered extremophilic conditions that are associated with indoor and outdoor cultural heritage. Apart from free-living fungi, lichens are a fungal growth form and ubiquitous pioneer colonizers and biodeteriogens of outdoor materials, especially stone- and mineral-based building components. This article surveys the roles and significance of fungi in the biodeterioration of cultural heritage, with reference to the mechanisms involved and in relation to the range of substances encountered, as well as the methods by which fungal biodeterioration can be assessed and combated, and how certain fungal processes may be utilized in bioprotection.


Asunto(s)
Artefactos , Hongos
5.
Fungal Biol ; 127(7-8): 1157-1179, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37495306

RESUMEN

For the first time, the International Symposium on Fungal Stress was joined by the XIII International Fungal Biology Conference. The International Symposium on Fungal Stress (ISFUS), always held in Brazil, is now in its fourth edition, as an event of recognized quality in the international community of mycological research. The event held in São José dos Campos, SP, Brazil, in September 2022, featured 33 renowned speakers from 12 countries, including: Austria, Brazil, France, Germany, Ghana, Hungary, México, Pakistan, Spain, Slovenia, USA, and UK. In addition to the scientific contribution of the event in bringing together national and international researchers and their work in a strategic area, it helps maintain and strengthen international cooperation for scientific development in Brazil.


Asunto(s)
Biología , Brasil , Francia , España , México
6.
Fungal Biol ; 127(7-8): 1187-1197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37495308

RESUMEN

Cerium is the most sought-after rare earth element (REE) for application in high-tech electronic devices and versatile nanomaterials. In this research, biomass-free spent culture media of Aspergillus niger and Neurospora crassa containing precipitant ligands (oxalate, carbonate) were investigated for their potential application in biorecovery of Ce from solution. Precipitation occurred after Ce3+ was mixed with biomass-free spent culture media and >99% Ce was recovered from media of both organisms. SEM showed that biogenic crystals with distinctive morphologies were formed in the biomass-free spent medium of A. niger. Irregularly-shaped nanoparticles with varying sizes ranging from 0.5 to 2 µm and amorphous biominerals were formed after mixing the carbonate-laden N. crassa supernatant, resulting from ureolysis of supplied urea, with Ce3+. Both biominerals contained Ce as the sole metal, and X-ray diffraction (XRD) and thermogravimetric analyses identified the biominerals resulting from the biomass-free A. niger and N. crassa spent media as cerium oxalate decahydrate [Ce2(C2O4)3·10H2O] and cerium carbonate [Ce2(CO3)3·8H2O], respectively. Thermal decomposition experiments showed that the biogenic Ce oxalates and carbonates could be subsequently transformed into ceria (CeO2). FTIR confirmed that both amorphous and nanoscale Ce carbonates contained carbonate (CO32-) groups. FTIR-multivariate analysis could classify the biominerals into three groups according to different Ce concentrations and showed that Ce carbonate biominerals of higher purity were produced when precipitated at higher Ce3+ concentrations. This work provides new understanding of fungal biotransformations of soluble REE species and their biorecovery using biomass-free fungal culture systems and indicates the potential of using recovered REE as precursors for the biosynthesis of novel nanomaterials.


Asunto(s)
Cerio , Oxalatos/química , Carbonatos/química , Biotransformación , Medios de Cultivo/química
7.
Curr Biol ; 33(12): 2417-2424.e2, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37230078

RESUMEN

Exceptional preservation of fossils has often been attributed to the actions of bacteria that aid in the preservation of soft tissues that normally decay rapidly. However, it is well known that fungi play a major role in organic matter decomposition, biogeochemical cycling of elements, and metal-mineral transformations in modern ecosystems. Although the fungal fossil record can be traced back over a billion years, there are only a few recorded examples of fungal roles in fossilization. In this research, we have carried out a detailed geobiological investigation on early Pleistocene hyena coprolites (fossilized dung) in an attempt to ascertain possible fungal involvement in their formation. Using an advanced microscopic and mineralogical approach, we found that numerous hydroxyapatite nanofibers (25-34 nm on average), interwoven to form spheroidal structures, constituted the matrix of the coprolites in addition to food remains. These structures were found to be extremely similar in texture and mineral composition to biominerals produced during laboratory culture of a common saprophytic and geoactive fungus, Aspergillus niger, in the presence of a solid source of calcium (Ca) and phosphorus (P). This observation, and our other data obtained, strongly suggests that fungal metabolism can provide a mechanism that can result in fossil biomineralization, and we hypothesize, therefore, that this may have contributed to the formation of well-preserved fossils (Lagerstätten) in the geological record. The characteristic polycrystalline nanofibers may also have served as a potential biosignature for fungal life in early Earth and extraterrestrial environments.


Asunto(s)
Biomineralización , Fósiles , Ecosistema , Bacterias , Minerales
8.
Langmuir ; 39(4): 1562-1572, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36661856

RESUMEN

Slippery silicone-oil-infused (SOI) surfaces have recently emerged as a promising alternative to conventional anti-infection coatings for urinary catheters to combat biofilm and encrustation formation. Benefiting from the ultralow low hysteresis and slippery behavior, the liquid-like SOI coatings have been found to effectively reduce bacterial adhesion under both static and flow conditions. However, in real clinical settings, the use of catheters may also trigger local inflammation, leading to release of host-secreted proteins, such as fibrinogen (Fgn) that deposits on the catheter surfaces, creating a niche that can be exploited by uropathogens to cause infections. In this work, we report on the fabrication of a silicone oil-infused silver-releasing catheter which exhibited superior durability and robust antibacterial activity in aqueous conditions, reducing biofilm formation of two key uropathogens Escherichia coli and Proteus mirabilis by ∼99%, when compared with commercial all-silicone catheters after 7 days while remaining noncytotoxic toward L929 mouse fibroblasts. After exposure to Fgn, the oil-infused surfaces induced conformational changes in the protein which accelerated adsorption onto the surfaces. The deposited Fgn blocked the interaction of silver with the bacteria and served as a scaffold, which promoted bacterial colonization, resulting in a compromised antibiofilm activity. Fgn binding also facilitated the migration of Proteus mirabilis over the catheter surfaces and accelerated the deposition and spread of crystalline biofilm. Our findings suggest that the use of silicone oil-infused silver-releasing urinary catheters may not be a feasible strategy to combat infections and associated complications arising from severe inflammation.


Asunto(s)
Cateterismo Urinario , Catéteres Urinarios , Animales , Ratones , Catéteres Urinarios/microbiología , Aceites de Silicona , Plata/farmacología , Biopelículas , Siliconas
9.
J Hazard Mater ; 446: 130691, 2023 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-36608576

RESUMEN

The toxicity of metals to microorganisms is highly correlated with the type of metal used. However, the differences in the resistance mechanisms of filamentous fungi to multiple metals remain unclear. In this study, we investigated the responses of Aspergillus niger to three toxic metals, i.e., Pb2+, Cd2+, and Cu2+. Fungal growth and metabolism indices showed that A. niger had a higher tolerance to Pb2+ (>1000 mg L-1) than to Cu2+ (300 mg L-1) and Cd2+ (50 mg L-1). An appropriate Pb2+ concentration (<500 mg L-1) stimulated fungal growth and metabolic activity, whereas Cd2+ and Cu2+ stress showed continuously negative influences on fungal physiological parameters, such as biomass and secretion of oxalic acid. A. niger responded to Pb stress by constructing a new border layer around its cell wall. This pathway was also confirmed using RNA-seq analysis, i.e., the gene encoding cell wall α-1,3-glucan synthase was upregulated. This upregulation subsequently promoted the production of polysaccharides, which are the main components that support fungal cell walls. In contrast, the expression of genes encoding both AAA family ATPase and efflux pump antibiotic resistance proteins for Cd2+ and Cu2+ was significantly downregulated. Therefore, these findings elucidated the relatively complete fungal responses to different metal stresses.


Asunto(s)
Aspergillus niger , Cadmio , Aspergillus niger/genética , Aspergillus niger/metabolismo , Cadmio/toxicidad , Cadmio/metabolismo , Plomo/toxicidad , Plomo/metabolismo , Ácido Oxálico/metabolismo
10.
Environ Microbiol ; 25(3): 661-674, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36527341

RESUMEN

Scientific understanding of biotic effects on the water trophic level is lacking for urban lakes during algal bloom development stage. Based on the Illumina MiSeq sequencing, quantitative polymerase chain reaction (PCR), and multiple statistical analyses, we estimated distribution patterns and ecological roles of planktonic bacteria and eukaryotes in urban lakes during algal bloom development stage (i.e., April, May, and June). Cyanobacteria and Chlorophyta mainly dominated algal blooms. Bacteria exhibited significantly higher absolute abundance and community diversity than eukaryotes, whereas abundance and diversity of eukaryotic rather than bacterial community relate closely to the water trophic level. Multinutrient cycling (MNC) index was significantly correlated with eukaryotic diversity rather than bacterial diversity. Stronger species replacement, broader environmental breadth, and stronger phylogenetic signal were found for eukaryotic community than for bacterial community. In contrast, bacterial community displayed stronger community stability and environmental constraint than eukaryotic community. Stochastic and differentiating processes contributed more to community assemblies of bacteria and eukaryotes. Our results emphasized that a strong linkage between planktonic diversity and MNC ensured a close relationship between planktonic diversity and the water trophic level of urban lakes. Our findings could be useful to guide the formulation and implementation of environmental lake protection measures.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Eucariontes , Filogenia , Plancton , Agua
11.
Environ Sci Technol ; 56(12): 8132-8141, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35561278

RESUMEN

Fungal-mineral interactions can effectively alleviate cellular stress from organic pollutants, the production of which are expected to rapidly increase owing to the Earth moving into an unprecedented geological epoch, the Anthropocene. The underlying mechanisms that may enable fungi to combat organic pollution during fungal-mineral interactions remain unclear. Inspired by the natural fungal sporulation process, we demonstrate for the first time that fungal biomineralization triggers the formation of an ultrathin (hundreds of nanometers thick) exoskeleton, enriched in nanosized iron (oxyhydr)oxides and biomolecules, on the hyphae. Mapped biochemical composition of this coating at a subcellular scale via high spatial resolution (down to 50 nm) synchrotron radiation-based techniques confirmed aromatic C, C-N bonds, amide carbonyl, and iron (oxyhydr)oxides as the major components of the coatings. This nanobiohybrid system appeared to impart a strong (×2) biofunctionality for fungal degradation of bisphenol A through altering molecular-level trade-offs between lattice oxygen and oxygen vacancy. Together, fungal coatings could act as "artificial spores", which enable fungi to combat physical and chemical stresses in natural environments, providing crucial insights into fungal biomineralization and coevolution of the Earth's lithosphere and biosphere.


Asunto(s)
Contaminantes Ambientales , Dispositivo Exoesqueleto , Hierro , Minerales/química , Óxidos/química , Oxígeno
12.
Regen Biomater ; 9(1): rbac013, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35449828

RESUMEN

Pin-tract infections (PTIs) are a common complication of external fixation of fractures and current strategies for preventing PTIs have proven to be ineffective. Recent advances show that the use of anti-infection coatings with local antibacterial activity may solve this problem. Selenium has been considered as a promising anti-infection agent owing to its antibacterial and antibiofilm activities. In this study, selenium nanoparticles (SeNPs) were synthesized via a cost-effective fungi-mediated biorecovery approach and demonstrated excellent stability and homogeneity. To investigate their anti-infection potential, the SeNPs were doped in silver coatings through an electroless plating process and the silver-selenium (Ag-Se) coatings were tested for antibacterial and antibiofilm properties against Staphylococcus aureus F1557 and Escherichia coli WT F1693 as well as corrosion resistance in simulated body fluid. It was found that the Ag-Se coating significantly inhibited S.aureus growth and biofilm formation on the surface, reducing 81.2% and 59.7% of viable bacterial adhesion when compared with Ag and Ag-PTFE-coated surfaces after 3 days. The Ag-Se coating also exhibited improved corrosion resistance compared with the Ag coating, leading to a controlled release of Ag+, which in turn reduced the risk of cytotoxicity against hFOBs. These results suggest that the fungal-derived SeNPs may have potential in use as implant coatings to prevent PTIs.

13.
Appl Microbiol Biotechnol ; 106(2): 821-833, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34981166

RESUMEN

Cerium has many modern applications such as in renewable energies and the biosynthesis of nanomaterials. In this research, natural struvite was solubilized by Aspergillus niger and the biomass-free struvite leachate was investigated for its ability to recover cerium. It was shown that struvite was completed solubilized following 2 weeks of fungal growth, which released inorganic phosphate (Pi) from the mineral by the production of oxalic acid. Scanning electron microscopy (SEM) showed that crystals with distinctive morphologies were formed in the natural struvite leachate after mixing with Ce3+. Energy-dispersive X-ray analysis (EDXA), X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR) confirmed the formation of cerium phosphate hydrate [Ce(PO4)·H2O] at lower Ce concentrations and a mixture of phosphate and cerium oxalate decahydrate [Ce2(C2O4)3·10H2O] at higher Ce concentrations. The formation of these biogenic Ce minerals leads to the removal of > 99% Ce from solution. Thermal decomposition experiments showed that the biogenic Ce phosphates could be transformed into a mixture of CePO4 and CeO2 (cerianite) after heat treatment at 1000 °C. These results provide a new perspective of the fungal biotransformation of soluble REE species using struvite leachate, and also indicate the potential of using the recovered REE as biomaterial precursors with possible applications in the biosynthesis of novel nanomaterials, elemental recycling and biorecovery. KEY POINTS: • Cerium was recovered using a struvite leachate produced by A. niger. • Oxalic acid played a major role in struvite solubilization and Ce phosphate biorecovery. • Resulting nanoscale mineral products could serve as a precursor for Ce oxide synthesis.


Asunto(s)
Aspergillus niger , Cerio , Biotransformación , Ácido Oxálico , Fosfatos , Estruvita
14.
Environ Microbiol ; 24(2): 667-677, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33955141

RESUMEN

Manganese oxide minerals can become enriched in a variety of metals through adsorption and redox processes, and this forms the basis for a close geochemical relationship between Mn oxide phases and Co. Since oxalate-producing fungi can effect geochemical transformation of Mn oxides, an understanding of the fate of Co during such processes could provide new insights on the geochemical behaviour of Co. In this work, the transformation of Mn oxides by Aspergillus niger was investigated using a Co-bearing manganiferous laterite, and a synthetic Co-doped birnessite. A. niger could transform laterite in both fragmented and powder forms, resulting in formation of biomineral crusts that were composed of Mn oxalates hosting Co, Ni and, in transformed laterite fragments, Mg. Total transformation of Co-doped birnessite resulted in precipitation of Co-bearing Mn oxalate. Fungal transformation of the Mn oxide phases included Mn(III,IV) reduction by oxalate, and may also have involved reduction of Co(III) to Co(II). These findings demonstrate that oxalate-producing fungi can influence Co speciation in Mn oxides, with implications for other hosted metals including Al and Fe. This work also provides further understanding of the roles of fungi as geoactive agents which can inform potential applications in metal bioremediation, recycling and biorecovery.


Asunto(s)
Compuestos de Manganeso , Manganeso , Aspergillus niger , Cobalto , Oxidación-Reducción , Óxidos
15.
Microb Biotechnol ; 15(4): 1189-1202, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-33710773

RESUMEN

Oxalic acid-producing fungi play an important role in biogeochemical transformations of rocks and minerals and possess biotechnological potential for extraction of valuable elements from primary or waste ores and other solid matrices. This research investigates the extraction of phosphate from rock phosphate (RP) by oxalic acid. Reaction parameters were derived using pure oxalic acid solutions to solubilize RP. It was found that the oxalic acid concentration was the main factor driving reaction kinetics. Excess oxalic acid could retard the reaction due to calcium oxalate encrustation on RP surfaces. However, complete P extraction was reached at stoichiometric proportions of apatite and oxalic acid. This reaction reached completion after 168 h, although most of the P (up to 75%) was released in less than 1 h. Most of the Ca released from the apatite formed sparingly soluble calcium oxalate minerals, with a predominance of whewellite over weddellite. Bioleaching of RP employing biomass-free spent culture filtrates containing oxalic acid (100 mM) produced by Aspergillus niger extracted ~ 74% of the P contained in the RP. These findings contribute to a better understanding of the reaction between apatite and oxalic acid and provide insights for potential applications of this process for biotechnological production of phosphate fertilizer.


Asunto(s)
Ácido Oxálico , Fosfatos , Aspergillus niger , Minerales
16.
Sci Total Environ ; 816: 151501, 2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-34762953

RESUMEN

Biomineralization of CaCO3 by microorganisms is a well-documented process considered applicable to concrete self-healing and metal bioremediation. Urea hydrolysis is the most widely explored and efficient pathway regarding concrete bioprotection. However, the potential of fungi has received relatively little attention compared to bacteria. In this work, we show that Fusarium cerealis, Phoma herbarum and Mucor hiemalis, isolated from concrete, could produce 828.6-941.3 mg L-1 ammonium­nitrogen in liquid media through urea hydrolysis indicating significant urease activity, and could grow in moderate (pH 8.3) or even extremely alkaline (pH 10.6) conditions. After culture in media containing 50 mM CaCl2, at least 48.8% Ca2+ was removed from solution by the selected fungi as calcite. The accumulation of Ca by the biomass was around 83.64-114.21 mg g-1. In addition, all fungi could mediate strontium carbonate formation with F. cerealis processing the highest ability for Sr removal, with ~61% added Sr being removed from solution. Scanning electron microscopy showed carbonate biominerals were encrusted on hyphae or aggregated in fungal pellets. When equivalent concentrations of Ca2+ and Sr2+ were supplemented to the media, CaCO3 with incorporated Sr formed with F. cerealis and M. hiemalis, and Sr(Sr, Ca)(CO3)2 with P. herbarum. Our results demonstrate the potential of fungi in providing carbonate coatings for concrete surfaces and simultaneous immobilization of Sr. We anticipate our work will promote further practical field research on porous cementitious materials protection by fungi and immobilization of potentially toxic metals from metal-laden ingredients, such as fly ash and granulated ground blast furnace slag.


Asunto(s)
Carbonato de Calcio , Ureasa , Biodegradación Ambiental , Precipitación Química , Hongos , Urea
17.
Environ Sci Technol ; 56(1): 672-680, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34905360

RESUMEN

Fungal-mediated extracellular reactive oxygen species (ROS) are essential for biogeochemical cycles of carbon, nitrogen, and contaminants in terrestrial environments. These ROS levels may be modulated by iron nanoparticles that possess intrinsic peroxidase (POD)-like activity (nanozymes). However, it remains largely undescribed how fungi modulate the POD-like activity of the iron nanoparticles with various crystallinities and crystal facets. Using well-controlled fungal-mineral cultivation experiments, here, we showed that fungi possessed a robust defect engineering strategy to modulate the POD-like activity of the attached iron minerals by decreasing the catalytic activity of poorly ordered ferrihydrite but enhancing that of well-crystallized hematite. The dynamics of POD-like activity were found to reside in molecular trade-offs between lattice oxygen and oxygen vacancies in the iron nanoparticles, which may be located in a cytoprotective fungal exoskeleton. Together, our findings unveil coupled POD-like activity and oxygen redox dynamics during fungal-mineral interactions, which increase the understanding of the catalytic mechanisms of POD-like nanozymes and microbial-mediated biogeochemical cycles of nutrient elements as well as the attenuation of contaminants in terrestrial environments.


Asunto(s)
Hierro , Nanopartículas , Hongos , Minerales , Nanopartículas/química , Nutrientes , Peroxidasas
18.
Curr Biol ; 31(24): R1557-R1563, 2021 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-34932960

RESUMEN

Fungi are key organisms of the biosphere with major roles in organic-matter decomposition, element cycling, plant pathogenicity, and symbioses in aquatic and terrestrial habitats. The vast majority exhibit a filamentous, branching growth form and are aerobic chemoorganotrophs that derive carbon and energy from organic substances, and are particularly associated with soil, the plant-root zone, and rock surfaces. It is now known that some fungi are lithotrophs, deriving energy from the oxidation of inorganic materials, whereas others are photoheterotrophs, deriving additional energy from light for organic matter utilization when oxygen is limited. This means that fungi are of much wider environmental significance than previously thought and explains their ubiquity in locations previously thought to be inimical to fungal existence, such as the deep subsurface and other anaerobic locations. In addition to such free-living species, fungi associated with photosynthetic partners are also of profound biosphere importance. For example, lichens, which are composed of a symbiotic association between a fungus and a phototrophic alga and/or cyanobacterium, are pioneer colonizers and bioweathering agents of rocks and minerals. Mycorrhizas are symbiotic, plant-root-associated fungi found to colonize the majority of plant genera, where they improve plant nutrition through solubilization of essential metals and phosphate from soil minerals. Biomineralization in the soil can also immobilize toxic metals in the vicinity of plant roots, thereby benefiting plant colonization and facilitating revegetation of contaminated habitats. Wherever fungi are found, transformation of metals and minerals is a key aspect of their activity, with biomineralization an important feature. Fungal biomineralization is an important facet of geomycology - namely the roles of fungi in geochemical and geophysical processes. This article seeks to highlight the concept of biomineralization as applied to fungi, the occurrence and significance of important fungal biominerals in natural and synthetic environments, and the applied potential of fungal biomineralization in nanobiotechnology.


Asunto(s)
Biomineralización , Micorrizas , Hongos , Metales , Minerales , Raíces de Plantas , Plantas/microbiología , Suelo , Microbiología del Suelo
19.
Microbiology (Reading) ; 167(12)2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34882532

RESUMEN

Biomineralization is a ubiquitous process in organisms to produce biominerals, and a wide range of metallic nanoscale minerals can be produced as a consequence of the interactions of micro-organisms with metals and minerals. Copper-bearing nanoparticles produced by biomineralization mechanisms have a variety of applications due to their remarkable catalytic efficiency, antibacterial properties and low production cost. In this study, we demonstrate the biotechnological potential of copper carbonate nanoparticles (CuNPs) synthesized using a carbonate-enriched biomass-free ureolytic fungal spent culture supernatant. The efficiency of the CuNPs in pollutant remediation was investigated using a dye (methyl red) and a toxic metal oxyanion, chromate Cr(VI). The biogenic CuNPs exhibited excellent catalytic properties in a Fenton-like reaction to degrade methyl red, and efficiently removed Cr(VI) from solution due to both adsorption and reduction of Cr(VI). X-ray photoelectron spectroscopy (XPS) identified the oxidation of reducing Cu species of the CuNPs during the reaction with Cr(VI). This work shows that urease-positive fungi can play an important role not only in the biorecovery of metals through the production of insoluble nanoscale carbonates, but also provides novel and simple strategies for the preparation of sustainable nanomineral products with catalytic properties applicable to the bioremediation of organic and metallic pollutants, solely and in mixtures.


Asunto(s)
Cobre , Nanopartículas , Carbonatos/metabolismo , Cromatos , Cobre/metabolismo , Hongos/metabolismo
20.
Water Res ; 202: 117449, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34332188

RESUMEN

Disentangling ecological mechanisms behind dredging is meaningful to implement environmental policy for improving water quality. However, environmental adaptation and community assembly processes of bacterioplankton in response to dredging disturbance are poorly understood. Based on Illumine MiSeq sequencing and multiple statistical analyses, we estimated interactions, functions, environmental breadths, phylogenetic signals, phylogenetic clustering, and ecological assembly processes of bacterioplankton community before and after dredging. We found distinct change in community composition, comparable decreases in diversity, functional redundancy and conflicting interaction, relatively low phylogenetic clustering, and relatively weak environmental adaptation after dredging. The bacterioplankton community assembly was affected by both stochastic and deterministic processes before dredging, but dominated by stochasticity after dredging. Sediment total phosphorus was a decisive factor in balancing determinism and stochasticity for bacterioplankton community assembly before and after dredging. Consequently, taxonomic and phylogenetic α-diversities of bacterioplankton exhibited higher contributions to the water trophic level represented by chlorophyl α before dredging than afterwards. Our results emphasized bacterioplankton in response to environmental changes caused by dredging, with nutrient loss and ecological drift playing important roles. These findings extend knowledge of contribution of bacterioplankton diversity to water trophic level and decipher mechanisms of bacterioplankton diversity maintenance in response to dredging, which is useful for guiding mitigation of cyanobacterial blooms.


Asunto(s)
Cianobacterias , Organismos Acuáticos , Cianobacterias/genética , Fósforo , Filogenia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...